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Stability and transition of a supersonic laminar 
boundary layer on an insulated flat plate 

By JOHN LAUFER AND THOMAS VREBALOVICH 
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 

(Received 9 May 1960) 

Self-excited oscillations have been discovered experimentally in a supersonic 
laminar boundary layer along a flat plate. By the use of appropriate measuring 
techniques, the damping and amplification of the oscillations are studied and the 
stability limits determined at free-stream Mach numbers 1.6 and 2.2. The wave- 
like nature of the oscillations is demonstrated and their wave velocities are 
measured using a specially designed ‘disturbance generator’, It is shown em- 
pirically that the stability limits expressed in terms of the boundary-layer- 
thickness Reynolds number are independent of the Mach number and dependent 
only on the oscillation frequency. The main effect of compressibility is an in- 
crease in wave velocity with Mach number. This has the consequence that the 
disturbances, although possessing the same dimensionless amplification coeffi- 
cient as in the incompressible case, have less time (per unit distance) to grow in 
amplitude. Thus, the adiabatic compressible boundary layer is shown to be more 
stable than the incompressible one. In  general, the experiments confirm the 
basic assumptions and predictions of the existing stability theory and also 
suggest the desirability of improvement in the theory in certain phases of the 
problem. Finally, on the basis of these results a rough estimate of the transition 
Reynolds number is made in the compressible flow range. 

1. Introduction 
The transition of a boundary layer from a laminar to  a turbulent state is one 

of the outstanding unsolved problems in fluid mechanics. Its practical import- 
ance is especially recognized in supersonic flows, where the accompanying aero- 
dynamic heating effects become an essential design consideration. 

Today it is a well-accepted fact that in incompressible flows transition is the 
result of not one but of several instability mechanisms (Dryden 1955; Morkovin 
1958). The first stage of the process is the so-called instability with respect to 
small disturbances (provided the free steam is void of large disturbances). This 
instability provides the triggering mechanism for the whole transition process 
and therefore must be considered very important. There are many indications 
that in compressible flows the transition phenomenon is basically the same. The 
present investigation was therefore undertaken with the belief that the study of 
the first stage of transition in the compressible boundary layer, the instability 
with respect to small disturbances, should result in valuable information. 

When the historical development of the stability problem in the incompressible 
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laminar boundary layer is considered, it is surprising to note that despite the 
great interest of theoretical researchers and the great practical importance 
of the problem, very few basic stability experiments were carried out. The com- 
paratively slow progress and the strong controversies in the 1930’s were mainly 
the result of this lack of basic experimental work. After all, fourteen years 
elapsed between 1929, when Tollmien (1929) first published his small-disturbance 
theory for the boundary layer, and 1943, when the experiments of Schubauer & 
Skramstad (1948) fully confirmed the theory. During this period the theory was 
exposed to strong criticism, not only because of its lack of mathematical rigour, 
but also because of its underlying physical model for the transition process. 
Specifically, the theory was attacked because the connexion between the small- 
disturbance instability and transition was not understood at that time, and the 
linearized two-dimensional theory was considered too great an oversimplification 
to describe adequately the strongly non-linear transition process. Furthermore, 
the self-excited boundary-layer oscillations, the most striking prediction of the 
theory, had not yet been observed. Obviously, only direct experiments could 
and did satisfy such criticism. The measurements of Schubauer & Skramstad 
demonstrated not only the existence of the instability waves, but also the fact 
that the behaviour of these waves agrees quantitatively with the theoretical 
predictions. These experiments were followed by a few similarly basic ones: 
Liepmann (1943) applied the technique to boundary layers on curved walls; 
Bennett ( 1953) considered the effect of increased free-stream turbulence level 
on stability; and, finally, Wortmann (1955) studied the stability problem using 
a completely different experimental method. It is believed that as a result of 
these experiments and of the theoretical studies, especially those of Lin (1945), 
who answered the remaining mathematical questions, the first stage of transition 
in the incompressible boundary layer is well understood. 

I f  attention is turned now to the stability problem in the compressible boundary 
layer, the lack of basic experimental work again becomes evident. After 1946, 
when the pioneering theoretical work of Lees & Lin (1946) extended the small- 
disturbance stability theory to flows at low supersonic Mach numbers, no per- 
tinent experiments were reported in the literature for more than ten years. In  
contrast to  the incompressible theory, however, the theoretical work gained ready 
acceptance; in fact, it was even applied to problems outside the immediate scope 
of the theory. Lees & Lin have clearly indicated that their work is restricted to 
flows at low Mach numbers (below approximately 1.5), where the wave velocities 
are small compared with the free-stream velocity and where the temperature 
fluctuations can be neglected in the relation for the characteristic values of the 
problem. These limitations were partially removed by Dunn & Lin (1955), who 
also included three-dimensional disturbances in their theory. Any further exten- 
sion of the theory to high Mach numbers, however, would become exceedingly 
difficult because of some of the inherent assumptions in the formulation of the 
theory. Neglect of disturbances that are supersonic relative to the free stream, 
for instance, would have to be justified. Undoubtedly, measurements examining 
such questions would be of great value. 

The available experiments, however, do not deal with this basic problem, but 
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with the study of the transition ‘point’ of a compressible boundary layer in the 
light of the stability theories. Although, in principle, strong objections may be 
raised against such direct comparisons, some qualitative results have been 
obtained. It has been shown in several instances that surface cooling increases 
the transition Reynolds number, which is consistent with Lees’s prediction of 
increased stability with cooling (e.g. Lees 1947). Furthermore, various investi- 
gators have reported that with increasing Mach number it becomes more difficult 
to trip the boundary layer, indicating in a loose sense that the layer becomes more 
stable at larger Mach numbers, which is again consistent with Lees’s (1952) 
calculations of decreasing amplification rates. 

At the time the present work was initiated, no experiments which directly 
concerned the first stage of transition (experiments analogous to those of Schu- 
bauer & Skramsted in incompressible flows) existed. This situation derived from 
several serious difficulties. It is well known from experience in incompressible 
flows that a suitable experimental environment is of vital importance. Not only 
the mean velocity and pressure gradients in the wind tunnel, but the tunnel 
turbulence level, as well, must be minimized. Supersonic free-stream turbulence 
is not yet well understood. Also, mechanical and electronic instrumentation can 
present a major difficulty. In  the measurement of small-amplitude flow fluctua- 
tions, it is obvious that mechanical vibrations in the traversing mechanisms, 
probes, and flat plates must be largely eliminated. Finally, the hot-wire technique 
must be developed and adapted so that measurements up to 100,000 c/s can be 
carried out and interpreted correctly. 

The experiments presented here succeeded to a large extent in overcoming 
these difficulties. By a careful and detailed examination of the free-stream 
fluctuations in the wind tunnel, a Mach number range in which the stability 
measurements could be accepted with confidence was chosen. The mechanical 
instrumentation was designed in such a way that any vibration or flow dis- 
turbance induced by the system could be immediately detected and corrected. 
Finally, the hot-wire technique and accompanying instrumentation were 
developed to the extent that they were not the major limiting factors in deter- 
mining the scope of the experiments. 

Under these circumstances the investigation at  the Jet  Propulsion Laboratory 
succeeded in accomplishing the following: 

(1) The existence of self-excited oscillations in a supersonic boundary layer 
was shown experimentally. 

(2) A detailed study of the behaviour of these oscillations was made, and the 
results were compared with theoretical predictions. 

(3) Some of the differences between the stability of the incompressible boun- 
dary layer and the stability of the supersonic boundary layer were further 
brought to focus. 

Some early results of this work are described elsewhere (Laufer 1956; Laufer & 
Vrebalovich 1957). Also, parallel with the present investigation, Demetriades 
(1958, 1960) obtained some interesting results on the stability problem in the 
hypersonic tunnel of the California Institute of Technology at Mach number 
5.8 using techniques similar to those described here. 

17-2 
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2. Experimental equipment 
2.1. Wind tunnel 

Most of the measurements were carried out in the Jet  Propulsion Laboratory 
18 x 20in. supersonic wind tunnel; some of the initial data were obtained in the 
12 x 12in. wind tunnel. The Mach number in the working section of the larger 
tunnel was continuously variable from 1-3 to  5-0. The distribution of the static 
pressure in the test section was uniform to within 2 % along the centre-line and 
5 yo six inches below and above the centre-line in the whole Mach number range. 
Such a uniform mean flow field served to great advantage in these experiments. 

Considerable time and effort were spent to reduce the turbulence level in the 
supply section. Figure 1 shows a portion of the tunnel circuit. The first two screens 
shown in the short entrance diffuser were installed in order to prevent local 
flow separation. At the entrance of the 8ft: diameter stagnation chamber, an 
Airmat paper filter* was stretched across the section to protect the hot wires from 
fine dust particles. The subsequent six damping screens served to reduce the 
turbulence level. 

I ,Screens. 20x20 mesh 

0 20 

I 
FIGURE 1. Supply section and test section of 18 x 20 in. wind tunnel. 

Turbulence-level measurements in the supply section were made approxi- 
mately 24 ft. downstream of the last damping screen. The results indicated that 
the temperature fluctuations were negligibly small and the velocity fluctuations 
were 1 yo of the local mean velocity for all the tunnel pressures and free-stream 
Mach numbers except for MI 4.5, where the level dropped to 4 yo. When it is 
considered that even for the lowest Mach number flow the velocity ratio of the 
free-stream and supply-section flow is somewhat more than 40: 1, a velocity 
fluctuation of less than 0.01 % in the free stream is calculated using Tucker’s 
method (1953). Consequently, the 1 yo turbulence level in the supply section was 
believed to be satisfactory. 

Measurements in the supersonic free stream presented much more difficulty. 
By use of a method proposed by Kovasznay (1953) and Morkovin (1956), the 

* Manufactured b$ American Air Filter, Louisville, Ky. 
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mass-flow (figure 2) and total-temperature fluctuations could be calculated and 
were found to increase very rapidly with Mach number. It is also seen in the 
figure that the fluctuations increase with decreasing tunnel pressure. The results 
of a detailed study of this problem will be published elsewhere (Laufer 1959) and 
will therefore not be described. Briefly, the fluctuations found in the free stream 
are shown to be due to a pure sound field produced by the thick turbulent 
boundary layers of the tunnel walls. Any reduction of the turbulence level at  the 
higher Mach number flows would involve removing the boundary layers from the 
tunnel walls, an extremely elaborate and difficult task, or operating the wind 
tunnel at pressure levels low enough to sustain laminar boundary layers. 
Unfortunately, because of practical limitations, neither was possible. 

Mach number 

FIGURE 2. Mass-flow fluctuations in test section. 
0 ,  Relin. - 90,000; 0 ,  Relin. - 330,000. 

From the above considerations it is obvious that any boundary-layer-stability 
work, in which low free-stream turbulence level is a necessity, is possible only 
at the lower Mach number flows in this tunnel. The choice of the upper Mach 
number limit is described in 3 5.3. 

2.2. Plat plates 

The experiments were carried out using two different flat plates. For the measure- 
ments at MI = 1.6, a $in. thick, 25 in. long, plate with a leading edge of 13 degrees 
was used. For the measurements at higher Mach numbers, a 1 in. thick, 33 in. 
long, plate with a leading-edge angle of 24 degrees was provided. Both plates 
were ground and lapped; the leading-edge radii were less than 0.001 in. 

2.3. Traversing mechanisms 

Most of the data were obtained with the hot-wire probe attached to a servo- 
controlled carriage and traversing mechanism (figures 3 and 4). The mechanical 
details are described elsewhere (Laufer & Vrebalovich 1958). 
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2.4. Hot-wire probes 
In all of the experiments described, the hot wires were 90% platinum-lOyo 
rhodium and were 0.00005 or 0-0001in. in diameter with nominal lengths of 
0.015 or 0*020in., respectively. The hot-wire probe (figure 5, plate I) is mounted 
in the carriage as shown in figure 4. 

from tunnel &ling 

Drive for vertical 

hot-wire probe 

Drive for horizontal 

I 

FIUURE 3. Diagram of 2-traversing mechanism. 

2.5. Diclturbance generator 

The basic problem was to generate the disturbances in the frequency range of 
5000 to 50,000 c/s without affecting the normal boundary-layer growth and the 
flow field. Several different methods were attempted in order to produce single- 
frequency disturbances near the leading edge of the flat plate. 

The disturbance generator finally adopted was essentially a high-speed valve. 
This opened and closed a narrow slit in the surface of the flat plate to allow 
periodic air pulses of any desired strength and frequency to disturb the boundary 
layer on the surface of the plate. The main part of this generator was a hollow 
cylinder (figure 6) 0.3 in. in diameter and 3.0 in. long (1.5 in. long for the 1 in. 
thick plate), with 40 slots, 0-Olin. wide, milled parallel to its axis (figure 7, 
plate 2). A slot (figure 6) 0.003in. wide and 3in. long was milled near the plate 
centre-line in the surface of the plate along the axis of the cylinder 1.7 in. (0.8 in. 
for the 1 in. thick plate) from the leading edge. The cylinder was connected to 
the variable-speed motor by means of gears, a long shaft in the plate, a high- 
speed grinder spindle, and a timing belt end pulleys. This arrangement can be seen 
in figure 8 (plate 3). The maximum rpm of the motor was 5000; this corresponded 
to the 90,000rpm of the cylinder. 
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The chamber that surrounded the slotted cylinder was sealed by a cover plate 
and by a Van de Grmff type of seal around the shaft (Strong 1938). Air wm 
allowed to enter the chamber through a porous plug in order to obtain uniform 
flow through the slit along its 3 in. length (figure 7, plate 2). The flow rate (i.e. the 
disturbance amplitude) was regulated by a needle valve. The generator frequency 
was monitored by the arrangement seen in figure 7 (plate 2). A light source and 

e wire for indicating 
r 

Flat plate 
.(. 

FIUURE 4. Hot-wire carriage and y-traversing mechanism. 

I 1 

FIUURE 6. Schematic diagram of the disturbance generator. 
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photocell were placed so that the reflected light from the rotating cylinder struck 
the photocell. Each time one of the cylinder slats passed the light path a reflexion 
occurred which was recorded by the photocell. Thus, the output of the photocell 
gave the proper reference frequency. 

2.6. Hot-wire set, auxiliary equipment 

Hot-wire ampli$er. The design requirements of the hot-wire equipment used 
for fluctuation measurements in supersonic flows have been described in detail 
by Kovasznay (1954). The high frequencies that are expected in supersonic flow 
fields necessitate an amplifier with a frequency response of several hundred kilo- 
cycles. Low-noise input circuitry is critical in such an amplifier, especially 
because of the greater frequency bandwidth and low level of the fluctuations 
expected. The commercially available Shapiro-Edwards Model 50 B constant- 
current hot-wire set (Shapiro and Edwards, South Pasadena, California) satisfies 
these requirements and was used throughout the experiment. 

Wave analysers. Several different harmonic wave analysers were used to 
determine the power spectrum of the hot-wire signals. A Panoramic SB7a 
ultrasonic harmonic wave analyser (Panoramic Radio Products, Inc., Mt 
Vernon, N.Y.), which exhibited the spectrum of the hot-wire signal from 1 to 
300 kc on an internal oscilloscope, was very useful in quickly showing if there were 
extraneous oscillations in the signal. Sharp peaks in the spectrum distribution 
observed on the analyser indicated hot-wire or probe vibrations, possible flat- 
plate vibrations, or oscillations in electronic equipment; and remedial measures 
could be taken immediately. 

Quantitative power-spectrum measurements were obtained with two different 
harmonic wave analysers. These instruments were also used as very narrow band- 
pass filters in order that the growth and decay of the energy in a narrow fre- 
quency band of the disturbance could be observed. The low-frequency range of 
the spectrum was covered by a Hewlett-Packard Model 300A harmonic wave 
analyser (Hewlett-Packard Co., Palo Alto, California) with a frequency range of 
30-16,000 c/s and a variable effective bandwith of 10 to 45 c/s. The high range of 
frequencies was detected by a Sierra Model 104 carrier-frequency voltmeter 
(Sierra Electronic Corp., Menlo Park, California) with a frequency range from 
3 to 150 kc and a bandwith of 600 c/s. 

The output circuitry of both analysers was modified to enable the installation 
of a vacuum thermocouple which would give an output thermocouple voltage 
proportional to the mean square of the output signal of the analyser. The method 
for plotting spectra will be described in detail in 9 4.1. 

Plotting table. Power spectra and the growth and decay of disturbances in 
the boundary layer were plotted on an Electronics Associates Variplotter 
(Electronic Associates, Inc., Long Branch, N.J.). 

3. Theoretical considerations 
It is outside the scope of this paper to discuss the theory of compressible- 

boundary-layer stability; that subject is adequately covered in the literature 
(Lees & Lin 1946; Dunn & Lin 1955). Instead, attention is focused on the under- 
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lying assumptions of the theory and on its predictions, so that they may be 
examined in the light of the experiments. 

3.1. Basic assumptions of the stability theory 

Under consideration are the general equations of motion of an ideal, viscous, 
heat-conducting, compressible fluid in which perturbations are introduced about 
a steady-state solution in the form 

Q ( x ,  Y ,  2, t )  = Q@, Y ,  2 )  +Q'(x, Y ,  2 ,  t).  

Thus, any quantity Q is decomposed into two parts: a time-averaged mean value 
and a time-dependent perturbation. 

Assumption 1. It is assumed now that 

so that second-order interactions between perturbations can be neglected. As a 
result of this assumption the equations become linear and can be handled by 
conventional methods. The theory considers now the flow over a flat plate and 
makes additional assumptions. 

Assumption 2. The usual boundary-layer approximations are introduced. 
Furthermore, from detailed considerations of orders of magnitude (Dunn & Lin 
1955), it  is concluded that certain viscous terms in the momentum equations and 
all the dissipation terms in the energy equation can be neglected provided the 
Mach number is not very high. 

Assumption 3. It is also assumed that the mean flow in the boundary layer 
can be considered parallel when the boundary-layer stability at a given location 
is to be obtained. Here again, a high Mach number is the limiting factor for the 
validity of this assumption (Dunn & Lin 1955). 

With these simplifications the structure of the equations allows the perturba- 
tions to have the form (see p. 296 for an explanation of the notation) 

where the amplitude function q depends on y/6 only. The more general three- 
dimensional case is treated by Dunn & Lin (1955). 

The simplified equations now take the following form. 
Continuity equation: 

api -apt ap aui avi 
-+u-+v'-+p -+- 
at ax ay (ax a y )  = o .  

Momentum equations: 
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Energy equation: 

Equation of state: 
p' p' T' 
- - ==+=. 
I, P T  

Or, if all the fluctuating quantities are written according to equation (3.1), 
wheref, +, n, r and 8 are the amplitude functions of u', v', p', p' and T', respec- 
tively: 

n r e  

F P T  

f (0) = # ( O )  = 0, 

- = =+=. 

The boundary conditions satisfied by the perturbations at the wall are 

(3.9) 

(3.io) 

(3.11) 

dB 
a-  ( O ) +  bO(0) = 0,  
dY 

where a and b depend on the frequency of oscillation and the physical properties 
of the gas and the wall. 

On the free-stream side the boundary conditions depend on the nature of the 
disturbance considered. Here the theory introduces the following assumption. 

Assumption 4. Only disturbances that are propagating with subsonic speed 
with respect to the free stream are considered. It is conjectured that supersonic 
disturbances do not play an important role in the boundary-layer stability pro- 
blem. This question has not yet been studied either theoretically or experi- 
mentally. From this assumption it follows that, for y --+ 03, 

f, 9, and 8+0. 

With the above six boundary conditions and the sixth-order system of linear 
differential equations, a characteristic-value problem is defined. The equation 
relating the eigenvalues may be written formally 

E(M!, aB,, a2, c) = 0. 

The solution of the stability problem is now reduced to solving this rela- 
tion. In their formulation, Lees & f i n  used a method of approximation within 
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which the above relation and the boundary conditions become independent of 
the temperature fluctuations. The approximation is based on the following 
aasumption. 

Assumption 5. In  essence it is required that the critical layer be near the wall. 
This is valid if the free-stream Mach number is subsonic or slightly supersonic. 
A consequence of this assumption is that the relation for the characteristic 
values becomes independent of the temperature fluctuations and the boundary 
conditions imposed on them. Later Dunn & Lin relaxed this assumption and 
showed that for higher Mach numbers the role of the temperature fluctuations 
does become important. 

The solution of the above secular equation involves elaborate and complex 
mathematical arguments, some of which are still not completely settled. How- 
ever, no new physical assumption is introduced. 

3.2. General results of the theory 

On the basis of these five assumptions the theory leads to the following general 
conclusions concerning the stability of a compressible boundary layer on an 
insulated flat plate: 

(1) The basic mechanism of stability is the same as that found in the incom- 
pressible case. 

(2) Three-dimensional disturbances become important at supersonic Mach 
numbers. 

From the relatively few existing numerical calculations (Dunn & Lin 1956; 
Lees 1947) some interesting insight can also be obtained into the effect of Mach 
number on the quantitative behaviour of the stability parameters. It is found 
that with increasing Mach number: 

(a)  The propagation speed increases and the wave-number decreases. 
( b )  The minimum critical Reynolds number diminishes. 
(c )  The maximum amplification ratios also decrease rapidly. 

4. Measuring techniques 
4.1. Disturbance amplitude 

In  order to measure disturbance amplitudes along the flat plate in a continuous 
manner, it  was of great advantage to maintain the hot wire at  a constant sensi- 
tivity. It should be remembered that the hot wire is sensitive to a combination of 
velocity, density and temperature fluctuations and that the relative sensitivities 
to these fluctuations change if the mean flow field changes. It follows that these 
sensitivities remain constant as x varies only if for each x-station the wire is 
placed at y-positions where the mean flow conditions are the same. Since the 
mean resistance of the hot wire is a sensitive indicator of the mean flow con- 
ditions, the voltage unbalance of the hot-wire bridge was used to place the wire 
automatically at the desired y-position. This was done in the following way. 
A Brown servo amplifier was connected parallel with the null galvanometer in 
the hot-wire resistance bridge (figure 9). If the resistance bridge became un- 
balanced (when, for instance, the wire moved to a slightly different x-position), 
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the servo amplifier energized a Brown servo motor which in turn caused the hot 
wire to move in the y-direction until the resistance bridge again was balanced. 
The y-position of the hot wire was obtained from the contact-point position on 
the y-slide wire (figure 4). This, together with the Y-axis scale-factor control, 
provided the y-position signal for one of the Y-axis plotting arms, as shown in 
figure 9. 

The x-position of the hot wire was determined by a slide wire on the T-beam 
(figure 3). The system for plotting this position was identical with that for the 
y-position plotting. With this method the spatial position of the wire could be 

Galvanometer servo --{ y-positioning mechanism I 
1 I 

Y-axis 
scale 
factor 

FIGURE 9. Constant y/8 servo system and y-position plotting. 

easily followed visually. The wire signal was fed into a wave analyser, the output 
of which provided the signal 3 for the second plotting arm of the table. The 
y-positions of the hot wire and the mean-square output of the analyser were thus 
plotted simultaneously against the 2-position of the hot wire. 

It should be mentioned that the plots 3 w8 x obtained in this way could be used 
directly to calculate the logarithmic derivatives (or amplifications) of the velocity, 
density, or temperature perturbations. Experimentally, it was found that the 
mass-flow and total-temperature fluctuations were anticorrelated and that at 
a given y/8 the logarithmic derivative of 3 was independent of hot-wire tem- 
perature (i.e. sensitivity). Under these conditions it may be shown, using the 
hot-wire equation (5.1), that 

1 a3-  l a &  
2$dx Qdx’  
-_ - --- 

where Q is the root mean square of velocity, density, or temperature pertur- 
bation. 
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4.2. Wave velocity 

The wave velocity c was obtained from phase measurements using the artificially 
introduced single-frequency disturbances. The technique is briefly described as 
follows. The signals from the reference source and from the hot wire located at x 
have the form eief = a sin pt, 

e; = b(x)sinp(t-$), 

Fmuurcy 
reference Am- 

signal Vacuum 
thermocouple 

~~ ~ 

FIQURE 10. Wavelength measurements. 

where a is a constant and p is the angular frequency. As the hot wire is moved 
along the plate the mean-square difference of these two signals can be recorded 
vsx, while b(x )  is kept constant. Thus, ---- a2 b2 

2 2  
(eref - e;)2 = - + - - 2ab sin pt sin P 

a2 + b2 X --- - ab cosp-. 
2 C 

It is easily seen that if the mean-square difference goes through a full cycle from 
position x1 to x2, then 

l! (xl - x2) = 27l, 
C 

or P P 
c = -(x1--x2) = --;t = A$ 2n 2n  
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During the experiment the output of the hot-wire amplifier was fed across two 
terminals of a balanced bridge and the reference signal was placed across the 
opposite terminals of the bridge (figure 10). A wave analyser monitored the hot- 
wire signal in order to keep the amplitude b(s) constant as the hot wire moved 
along the plate. The mean-square difference of the hot-wire and reference signals 
was then automatically plotted. 

4.3. Amplitude distribution across the boundary layer 

The hot-wire probe was fixed at a given s-position on the flat plate, and the 
output and current of the wire were plotted against its y-position. A Brown servo 
system kept the heated-wire resistance constant as the probe moved through the 
layer. The y-position of the wire was plotted as the abscissa of the plotting table, 
and the d.c. current in the wire was one of the two ordinates. The output of the 
hot-wire amplifier vacuum thermocouple or the wave-analyser vacuum thermo- 
couple was used as the second ordinate on the table. The time constant and 
sensitivity of the wire changed, of course, as the wire was moved through the 
layer; these were calculated and the data corrected appropriately. Later, the 
correct precalibrated time constant was manually set during the measurements. 

5. Results and discussion 

Before the study of the fluctuations in the boundary layer was undertaken, the 
mean flow field in the layer was examined. For this reason three types of mean 
measurements were made: (1) pressure distribution on the plate, (2) rate of 
boundary-layer growth, and (3) velocity distribution across the layer. 

(1) Figure 11 shows the static-pressure distributions along the plate for 
.Ml = 1.6 and Nl = 2.2 and at tunnel pressures most often used during this 
investigation. The dashed line indicates the pressure distribution on the centre- 
line of the empty tunnel. It is seen that in the region of interest the pressure is 
constant along the plate within 2 yo. 

(2) The rate of growth of the boundary layer was examined using the method 
described in tj 4. I. By tracing the position of the hot wire as it follows points of 
constant mean mass flow along the plate, the boundary-layer growth can be 
easily checked. From boundary-layer similarity considerations the trace, of 
course, has to be parabolic. This method provided an easy and sensitive means 
of checking whether or not the measurements were made under the desired 
conditions. For instance, the trace became non-parabolic if the hot-wire probe 
was too close to the plate surface and disturbed the flow locally or if a pressure 
gradient destroyed the similarity because of some exterior condition. All the 
measurements of disturbance amplitude variations along the plate were accom- 
panied by such traces. A typical example is shown in figure 12. It is to be noted 
here that near the last inch the trace deviates from the parabola, indicating 
some irregularity in the flow (nearness of transition). 

(3) Measurement of the mean velocity distribution at one station of the plate 
was also made. This was carried out while artificial disturbances were introduced 

5.1. Establishment of a laminar boundary layer 
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in the boundary layer in order to check whether or not the mean flow field had 
been disturbed by the alight bleeding of air through the slot of the disturbance 
generator. The accuracy of the mean measurements could have been improved 
by using a longer and thicker wire; however, fluctuation measurements, which 
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FIGURE 11. Static-pressure distributions along the flat plate and in empty tunnel. 
Upper figure: M ,  = 1-6, Relin. = 180,000. Lower figure: M, = 2.2, Relin. = 75,000. 
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FIGURE 12. Growth of boundary layer and variation of disturbance amplitude 
along the flat plate. M I  = 2.2, R e / h  = 77,000, f = 23 kc. 

were made simultaneously, limited the wire diameter to small sizes. Figure 13 
shows the raw data for the unheated-wire-resistance change in the boundary 
layer from which the total temperature can be easily calculated. The typical 
maximum is clearly seen from the trace. Figure 13 also shows the current dis- 
tribution for one particular temperature loading. From such traces the velocity 
distribution can be calculated using the method described by Laufer & McClellan 
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(1956). Also the data provide the necessary information for computing the hot- 
wire sensitivities. Using these and the mean-square hot-wire output 3 (figure 14) 
the various flow fluctuations may be calculated (see 5 5.5). 

Distance from flat-plate surface y (in.) 

FIGURE 13 

Distance from flat-plate 
surface y (in.) 

FIGURE 14 

FIG~RE 13. Unheated-wire resistance and current variation across the boundary layer. 
M ,  = 2.2, Relin. = 77,000, x = 5 in., R, = 33.58 R. 
FIGURE 14. Mean-square hot-wire voltage across the boundary layer at a fixed frequency. 
M ,  = 2.2, Relin. = 77,000, x = 5 in., f = 23-2 kc. 

In  figure 16 the solid line is the theoretical velocity distribution calculated by 
Mack (1958) using the Klunker-McLean method. The agreement between the 
experiments and theory is seen to be satisfactory. Near the wall (for M < 1.2) 
the measurements were not reduced, since here the reduction is more complicated 
and not reliable. (The heat loss of the wire here is not only a function of the local 
Reynolds number, but also of the Mach number.) For later reference the cal- 
culated Mach number and temperature distribution are also given in figure 16, 

5.2. First indications of instability 
In  the stability problem under study here, the existing low-speed experiments 
and the theory gave many helpful hints as to what to look for and what to 
observe. However, it  was difficult to decide how and where to make the obser- 
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vations, because of the great differences between the experimental environments, 
because of the magnitudes of the physical variables such as frequency and mean 
T elocity in low speed and supersonic flow, and because of the more complicated 
flow field. Therefore, considerable time and effort were required before the 
existence of instability could be detected and the ‘real’ evidence isolated from 

Distance from flat-plate surface y (in.) 

M ,  = 2.2, Relin. = 77,000, x = 5 in. 
FIGURE 15. Mean velocity distribution across the boundary layer. 

Distance from flat-plate surface y (in.) 

M I  = 2.2, Relin. = 77,000, x = 5 in. 
FIGURE 10. Mach number and temperature distribution across the boundary layer. 

the ‘ fictitious ’ evidence. A qualitative description of the observations identifying 
the instability will be given in Q 5.2; a more critical and quantitative examination 
of the results will be made later. 

The critical layer. It was noticed in the early phase of the experiments that 
even though the measurements of mean quantities had clearly demonstrated the 
laminar state of the boundary layer, the fluctuations within the layer were con- 

18 Fluid Meah. 9 
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siderably larger than those in the free stream. A detailed examination of their 
amplitude distribution across the layer indicated a remarkably sharp peak near 
the centre of the layer (M, = 2-2), no matter at which z-station the measurement 
was carried out, including stations a few tenths of an inch (R, x 100) from the 
leading edge. Figure 17 shows a typical distribution of the mean-square hot-wire 
output 2 across the layer, clearly exhibiting the peak. Incidentally, t? corre- 
sponds approximately to the mean-square mass-flow fluctuations. It is well 

Distance from flat-plate surface y (in.) 

FIUURE 17. Distribution of the hot-wire output across the boundary layer. 
M I  = 2.2, Relin. = 80,000, x = 6.0 in. 

known that such a peak is a characteristic feature of the self-excited instability 
Oscillations in the incompressible laminar boundary layer (Schubauer & Skram- 
stad 1948) and is the result of strong vorticity concentration at points where 
the local mean velocity is equal to the propagation velocity of the oscillations. 
Whereas in the incompressible case the peak was always located near the wall, 
in the present experiments for M, = 2.2 the peak was found to be near the centre 
of the layer, indicating a higher ratio of wave velocity to free-stream velooity, 
as expected from theoretical calculations (Lees 1947). 

Maximum ampli$catim curves. Observation of the fluctuations on an oscillo- 
scope did not reveal any periodic oscillations as reported by Schubauer & 
Skramstad. However, examination of the energy spectra indicated a charac- 
teristic maximum which shifted to lower frequencies as the distance from the 
leading edge z was increased, and at the same time the peaks were seen to be 
sharper. Figure 18 shows several such spectra. The question that immediately 
arises is whether the peaks are the result of the boundary-layer instability process. 
If indeed they are, it should be expected that the dimensionless frequencies 
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corresponding to the maxima be unique functions of the boundary-layer Reynolds 
number. This was examined by varying the Reynolds number two ways during 
the spectrum measurements: (1) spectrum data were taken at various distances 
from the leading edge while the tunnel pressure was kept constant; (2) the tunnel 
pressure was changed for each spectrum distribution obtained at  a constant 

Frequency f (kc) 

several mpositiom. M ,  = 2.0, Relin. = 300,000. 
FIUURE 18. Energy spectra of the natural disturbances in the boundary layer at 

Re 

FIGURE 19. Maximum amplification curves. 0, Ml = 1.5; v, MI = 1.6; 0, MI = 2.0; 
0, M ,  = 2.2. Open symbols: stationary hot wire; solid symbols: moveable hot wire. 

18-2 
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x-position. The results of the two sets of tests, indicated by open and solid 
symbols in figure 19, are seen to  be consistent for each Mach number tested. It is 
further seen from figure 19 that the curves, usually referred to as the maximum- 
amplification curves, move to lower values of the non-dimensional frequencies 
as the Mach number increases. This tendency is expected from the stability 
calculations of Lees (1947). These measurements thus gave further clues that 
the observations must be related to the boundary-layer instability. 

3 

1-2 2 
0 
0.1 . rl 

1 

0 
3 

1-2 2 

9 
0 

d 

1 

0 
3 

2 
I *a 
dl 
\ 

- 1  

0 
3 

2 

12 
1 

I 

0 

Distance from leading edge z (in.) 

0 2 4 6 8 10 

2 

I “2 
“ 1  

0 
0 2 4 6 8 10 

Distance from leading edge 2 (in.) 

FIGURE 20. Variation of disturbance amplitudes along the 
flat plate a t  several frequencies. 

Amplitude variations along the plate. The most direct and most positive evidence 
of the small-disturbance type of instability was obtained from the examination 
of the energy content of various narrow frequency bands at various distances 
from the leading edge. This kind of experiment was suggested by the well-known 
‘filtering action ’ of the boundary layer whereby it augments the energy in certain 
frequency bands of the disturbances and diminishes the energy in others, de- 
pending on the Reynolds number. Figure 20 shows such measurements carried 
out at Mach number 2.2 in the frequency range of 6 to 42 kc. These curves were 
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obtained by the method described in Q 4.1 ; that is, the wire was moved along 
lines of constant y / 6  and the signal was fed through a wave analyser. The ordinates 
of the various curves are comparable as indicated; the absolute scale, however, 
is arbitrary. It is seen in figure 20 that the curves exhibit a minimum or s 
maximum or both, demonstrating the amplifying and damping effect of the 
boundary layer. At the x-positions where the curves have negative slopes, the 
boundary layer is stable with respect to the disturbances and unstable where the 
slopes are positive. 

5.3. Disturbances present in the boundary layer 
The experiments that have been described gave strong evidence of the existence 
of self-excited oscillations in the boundary layer. However, before any quan- 
titative conclusions are drawn from them, there are several points thst should 
be further discussed. 

Extraneous eflects. Most of the experiments utilized the convenient (but not 
always desirable) free-stream disturbances as a means of studying the stability 
problem. The disturbances were found to be spatially homogeneous and to have 
a continuous energy spectrum, the energy decreasing with frequency. At the 
leading edge of the flat plate these disturbances are carried into the boundary 
layer and their energy spectra (corresponding to a constant y / 6 )  undergo certain 
changes along the plate. For the purpose of the present investigation, it is 
essential to know that these changes are due primarily to the stabilizing (or 
destabilizing) action of the boundary layer, and that secondary effects that also 
may influence the energy spectrum are negligibly small. Causes of such extran- 
eous effects might be: (1) disturbances convected into the boundary layer along 
its outer edge by the mean mass influx; (2) interaction between disturbance 
energies corresponding to  different frequency bands (this effect would rule out 
the use of disturbances having wide, continuous energy spectra); (3) strong 
interaction between the disturbances and the mean flow field. 

In  order to examine the importance of (1) and (2) above, an artificial disturb- 
ance of controlled frequency and amplitude was introduced near the leading edge, 
and its amplitude variation along the plate was studied. The initial amplitudes 
were chosen to be much larger than those of the natural disturbances but not 
large enough to disturb the mean flow field of the boundary layer. A comparison 
of the neutral curves (to be shown and discussed later) that were obtained using 
natural and artificial disturbances shows complete agreement. It may thus be 
concluded that any influence of these effects on the location of the stable and 
unstable regions is negligibly small. 

The optimum amplitude for the artificial disturbances, incidentally, could be 
conveniently determined by observing the traces of the boundary-layer growth 
(see Q 4.1). In  figure 21 a typical example of the effect of excessive injection rate 
is given. The figure also shows the extreme sensitivity of the boundary-layer 
stability mechanism (and, incidentally, of the instrumentation) to any change in 
the mean flow field. The boundary-layer growth curves (designated by y), 
obtained with and without injection through the slot, do not coincide, indicating 
a change in the mean flow field. It should be remembered that through the servo 
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system the hot wire automatically seeks points of constant mean mass flow. Thus, 
as the boundary layer thickens because of an excessive injection rate, the hot 
wire moves a certain distance away from the wall. At the same time it is to be 
noted in figure 21 that the amplitude curves (designated by 3) do not peak at  
the same x-position. However, if the increase in boundary-layer thickness is 
taken into account, the neutral points correspond closely to the same value of 
the Reynolds number. 

k I 

Distance from leading edge 2 (in.) 

FIGURE 21. Variation of a natural and an artificial disturbance with corresponding 
boundary-layer growth curves. M ,  = 2.2, Re/in. = 76,000, f = 23 kc. 

Any further increase in the amplitude of the artificial disturbance resulted in 
a measurable change in the boundary-layer growth rate, indicating the presence 
of effect (3). If the non-linear interactions of the type listed under (3) are to be 
considered negligible, the amplitudes of the disturbances introduced in the 
boundary layer must be small in all the frequency bands. Of course, it  is difficult 
to decide a priori what can be considered a small amplitude. One possibility 
would be by means of a comparison of stability results obtained using different 
initial disturbance amplitudes. Unfortunately, variation of the free-stream 
disturbance level for a given flow Mach number proved to be impractical. In- 
stead, the stability measurements were repeated at various flow Mach numbers 
(1.6, 2.2, and 3-0) in which cases the free-stream mass-flow fluctuations were 
approximately 0.1, 0.2, and 0.4%, respectively. It was established that the 
results at M = 2.2 were consistent with those obtained at M = 1.6; whereas 
at  M = 3.0 the detection of self-excited oscillations was much more difficult and 
less reliable. For this reason the experiments were limited to Mach numbers 
below 2.5. 
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Repeatability of the memurements. Once an acceptable upper limit to the free- 
stream disturbance amplitudes was decided on (that corresponding to M = 2.2), 
it was not too difficult to ascertain that all subsequent measurements should be 
carried out within this amplitude limit. Since the position of transition from the 
laminar to the turbulent state is a sensitive indication of the disturbance ampli- 
tudes present in the boundary layer, an early transition immediately indicated 
excessive disturbances. The reason for this not too infrequent occurrence was 
traced to leaking nozzle seals or pressure holes or to damage on the flat-plate 
leading edge. However, once such a situation was remedied, all the measure- 
ments described here were well reproducible even if they were repeated after a 
considerable time interval (one year). The maximum shift in the neutral points 
seldom exceeded AR, = 20. The reliability of the measurements was further 
enhanced by the close agreement with the results obtained using artificial 
disturbances. 

5.4. Neutral stability curves and ampli$cations 

Examining the stability of the boundary layer with respect to a given disturb- 
ance, one is interested not in the absolute amplitudes of these perturbations but 
rather in their streamwise logarithmic derivatives (amplifications) along the 
plate. The boundary layer may then be considered stable at  a given Reynolds 
number if 

and unstable if 

-- lag < 0, 

_- lag > 0, 

&ax 

08% 

where o(x, y/6)  is any quantity such as G, p ,  or p .  The so-called neutral points 
where the logarithmic derivative vanishes correspond to the limits between the 
stable and unstable regions. Such a stability criterion, however, does not define 
a unique neutral curve as described below. 

In  figure 20 the hot-wire outputs T; are plotted as a function of x. Since the 
logarithmic derivative of Zf is equivalent to that of 8 (f 4.1), the stability limits 
may therefore be determined from the curves of figure 20. According to  the 
stability criterion given above, the extrema of the curves correspond to the 
neutral points; the x-location of a minimum indicates the beginning of the 
unstable region (lower-branch neutral point), and that of a maximum the end 
(upper-branch neutral point). In  figure 22 the non-dimensional frequency is 
plotted against the positions of the corresponding neutral points expressed in 
terms of R,. The figure includes not only the neutral points from figure 20, but 
also those obtained at other tunnel Reynolds numbers and those obtained using 
artificial disturbances. 

Figure 22 clearly shows that the stability limits so obtained depend on the 
value of y/6 at which the observations were made. The difference in the neutral 
curves is definitely within the accuracy limits of the measurements. Subsequent 
observations at  higher tunnel pressures (to check for possible probe interference) 
and using artificial disturbances gave the same result. 
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In  figures 20 d and 20 e one may directly compare two amplitude distributions 
(f = 20 kc) made at y/S = 0.8 and y/S = 0.45. The x-positions of the maxima 
and minima are noticeably different; furthermore, the minimum obtained at 
y/& = 0.8 is much better defined that at y/& = 0.45. As a matter of fact, for 
lower frequencies the minimum could be detected only with difficulty or not at 
all at y/S = 0.45 (not shown). 

FIQURE 22. Neutral stability curve at M I  = 2.2. 

Disturbance 

YI6 Natural Artificial 

0.34 0 
0.45 0 0 

0.7-0.8 A A 
Areamethod 4 

The differences become even more apparent if the logarithmic derivatives 
for the two cases are compared. Figure 23 shows these derivatives in a non- 
dimensional form computed at various values of the Reynolds number. It is 
seen that the amplifications always appear smaller in the outer edge of the layer 
and that the difference becomes less apparent with increasing Reynolds number. 

In  order to further examine this problem, the stability criterion will now be 
expressed somewhat differently. We define a mean amplitude I? averaged across 
the boundary layer (the use of a mean energy would lead to similar results), 
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and we propose to call the boundary layer stable where 

> 0. and unstable where _- 1 ar 
rax  

This stability criterion is equivalent to the previous one if 

_- 1 ar = _ _  iaz or a a f = ,  
rax e"ax ax r 

for all values of y/S,  that is, if the distribution +/I' is a function of y/S only and 
thus follows the boundary-layer similarity. This condition will now be experi- 
mentally investigated. For the calculations of I?, amplitude distributions across 

M =  2 2  .Test 1 1 Test 2 A Artificial --7 

, 0 2  0.6 1.0 1.4 1.8 

p v p :  x 104 p v p :  x 104 p v p :  x 104 p v p :  x 104 

FIGURE 23. Amplification cupves. 

the layer were measured at  various x-positions. A sample of such distributions 
corresponding to 30 kc frequency is shown in figure 24. (Incidentally, the typical 
maximum near the critical layer is already noticeable at x = 0.5 in.; the curious 
secondary peaks will be discussed in $5.5.) 

In  figure 25 the normalized amplitudes 

are plotted against y/S for various values of R,. (For clarity, not all the distribu- 
tions are shown.) 

Clearly, the aboveconditionisnot satisfied. Near the critical layer (ajax) (Zf/r) is 
positive, and near the free-stream end it is mainly negative. This explains why the 
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amplifications obtained at y/6 = 0.45 are larger than those at y/6 = 0.8 (figure 23), 
or why the unstabIe region corresponding to y/8 = 0.45 in figure 22 is wider. 

Deciding which stability limits to adopt is really an academic question. In 
a comparison of disturbance amplitudes corresponding to the same mean flow 

t t i 8 8 
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FIUTJRE 24. Amplitude distribution across the boundary layer of a 
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conditions (constant ~ / a ) ,  the physical fact is that disturbances are amplified 
more near the critical layer than near the inner and outer edges of the boundary 
layer, especially for low Reynolds numbers. Should one want to talk about a 
unique neutral curve, the second stability criterion is preferable. Using this 
criterion, some calculated neutral points are shown as stars in figure 22. 

FIUURE 26. Normalized amplitude distributions. M I  = 2-2, Relin. = 86,000, f = 30 kc. 

__-____ 
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5.6. Amplitude dietributions across the boundary layer 
In  the previous section some distributions in terms of the hot-wire output 
e; have been shown (figure 24). The behaviour of the velocity, temperature, and 
pressure fluctuations across the layer will now be examined. 

An artificial disturbance having a frequency of 23 kc (@v/U; = 0-85 x lo-*) 
was chosen for the experiment and was examined at  a position x = 5in. 
(R, = 400). This approximately corresponded to a point on the upper branch of 
the neutral stability curve. In  order to express the hot-wire output voltages in 

- 

0 02 0.1 0.6 0 8  1 1.2 1.4 1.6 1.8 2 

Sensitivity factor S 

FIGURE 26. Fluctuation mode diagram in the free stream near the edge of the 
boundary layer. MI = 2.2, Relin. = 77,000. 

terms of the flow quantities, the method suggested by Kovasznay (1953) was 
applied. As is well known, only two of the perturbations, mass-flow 

[m’/% = p’/P + U‘/Z]  

and total temperature [T!/F’T = cc(T’/p) +P(u’/ii)] 

fluctuations can be obtained (see equation (5.1)) in the range M > 1.2. Typical 
raw data of the hot-wire output are shown in figure 17. The measurements 
resulted in mode diagrams similar to that shown in figure 26, indicaking that 
inside the layer, just as outside, 61% and pT/FT appear to be perfectly anti- 
correlated (the points in the diagram define a straightline). From such diagrams 
the meas-flow and total-temperature fluctuations may be directly computed; 
the result is plotted in figure 27. The very pronounced peak near the critical 
layer (y M 0.28 in.) is well illustrated. 

Unfortunately, a result of this nature is not very instructive unless the three 
basic fluctuation quantities can be separated. In order to do this it is necessary 
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to make an assumption concerning the fluctuation field. Outside the boundary 
layer, in the potential field of the oscillation, this does not present a problem. 
Here isentropic relations between the temperature and density fluctuations 
exist and they can therefore be calculated separately (see $5.6).  Inside the 
boundary layer, however, the situation is different: the dominating action of 
viscosity near the wall and a t  the critical layer prevents the making of such an 

Y/6 

FIGURE 27. Mass-flow and total-temperature fluctuations in the boundary layer. 
MI = 2.2, Relin. = 77,000, x = 6 in. 

assumption. Another simplification is used instead, based on the following quali- 
tative argument. A wave motion superimposed on the boundary layer produces 
a pressure gradient a@/ay that diminishes with decreasing wave amplitude and 
increasing wavelength. Since v'/U is small and the wavelength is large (approxi- 
mately 108) in the present experiments, it will be assumed that a@/ay is small 
and thus @ is constant across the layer. The magnitude of @ was calculated from 
the mass-flow fluctuation measurement near the edge of the boundary layer 
(y/S = 1-08), using isentropic relations between the perturbations. Since the 
phase relation between the pressure and the velocity (or temperature) fluctuations 
is not known (except the fact that they are in phase or 180 degrees out of phase), 
two distributions of these quantities are obtained from the hot-wire equations. 
One set of roots, for instance, results near the critical layer in a positive pressure- 
temperature correlation if one chooses negative pressure-velocity correlation, 
and vice versa. 

Without additional information it is not possible to choose which of the two 
sets of roots is the correct one. It was necessary to refer to the solution of the 
perturbation equations (3.1-3.11) to decide on this. For this purpose the 
inviscid equations of motion were integrated in the outer half of the boundary 
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layer using the theoretical eigenvalues,* and the results were compared with the 
corresponding distributions calculated from the measurements. The amplitude 
of the computed mass-flow fluctuations was matched to the measured value at 
y = 6, and the theoretical results were plotted as thin solid lines in figure 28. It is 
seen that the theoretical pressure fluctuations indeed are fairly constant within 
about 15 yo, at least in the outer half of the boundary layer.? Thus, the assump- 
tion of constant fi used in the reduction of the measured data is justified. The 
symbols in figure 28 correspond to the roots of the hot-wire equations nearest the 
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FIGURE 28. Velocity, temperature, and pressure fluctuations in the boundary layer. 
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theoretical curves. Since the second set of roots defines a completely different 
velocity and temperature distribution, it was not difficult to pick out the correct 
roots. The only exception was the point nearest the wall (y/6 = 0.31); in this 
case both roots are shown. Incidentally, this point corresponds to a position 
where M = 0.8, and the more general hot-wire equations suggested by Morkovin 
(1956) were used in reducing the data. It should also be mentioned that since 
the hot-wire sensitivities at  transonic flows are not well established, the measure- 
ments here are less reliable. 

The root-mean-square values of the various fluctuations in figures 27 and 28 
were plotted in a fashion that shows the phase relations between them. It was 
mentioned earlier that these fluctuations were always either in phase or 180 

* The authors are grateful to Dr L. Mack for providing these calculations. 
t Some recent calculations of Dr E. Reshotko show that this is true across the whole 

layer. 



286 John Laufer and Thmnm Vrebalovich 

degrees out of phase with each other. In  the figures the phase relations with 
respect to the pressure fluctuations are indicated: in-phase fluctuations are 
plotted in the positive sense, out-of-phase ones in the negative sense. For in- 
stance, outside of the boundary layer where the isentropic relations hold between 
pressure, density, and temperature fluctuation (they are all in phase), the 
temperature fluctuations are plotted in the positive sense. It is interesting to 
notice that inside the layer not only the velocity oscillations (as found in the 
incompressible case), but also the temperature oscillations undergo a 180-degree 
phase shift. 

At this point a comment is in order on the secondary peaks clearly shown in the 
distributions figure 24. These peaks were almost always present (also with 
artificial disturbances) when measurements were made at  high mean-wire 
temperatures; at  low temperatures, only a small peak or no peak was observed. 
Thus, the secondary peaks are believed to be the result of a curious combination 
of the hot-wire response and the particular distribution of the velocity, tem- 
perature, and density fluctuations. 

One of the most striking features of the fluctuation distributions shown in 
figure 28 is the large amplitude of the temperature (and density) distribution 
near the critical layer. Since the mean temperature gradient in the boundary 
layer increases rapidly with Mach number, such a result is not surprising. As 
a matter of fact, with increasing free-stream Mach number the temperature and 
density fluctuations will become more and more important. From the continuity 
and energy equations (3.7) and (3.10), one obtains, neglecting conductivity, 

In the region of our interest, near but just outside the critical layer where the 
non-viscous approximation is still valid, the temperature and density fluctua- 
tions are 180 degrees out of phase. Therefore, in terms of root-mean-square 
values, the above equation becomes 

The right side of the equation increases rapidly with Mach number; thus, for 
a given disturbance, (G/ ' i l )  (l/aS) constant, the temperature and density fluctua- 
tions become large indeed. 

5.6. The propagation velocity 
From theoretical considerations it is expected that once a disturbance is intro- 
duced locally into the boundary layer it will develop into a wave motion having 
a definite wave velocity and amplitude variation. The latter has already been 
discussed; it remains to be shown experimentally that the motion is wave-like. 
This was done by two different methods: (1) by measurement of the wavelength 
and (2) by a more indirect technique. 
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(1) The determination of the wavelength of an artificial disturbance of known 
frequency was described in Q 4.2, and a typical result is shown in figure 29. The 
plot, which incidentally is raw data, indicates unquestionably the wave character 
of the disturbance and provides the wavelength directly. From the memured 
wavelength corresponding to the neutral point and from the known frequency, 
the velocity of a neutral wave can be obtained. 

Distance from leading edge x (in.) 

FIGURE 29. Wavelength measurements of an artScia1 disturbance. 
MI = 2.2, Relin. = 77,000, f = 19.6 kc. 

(2) The alternative method is based on the idea that if the artificial disturbance 
indeed develops into a wave motion, the boundary layer may be considered a 
moving wavy wall. From the measurements of the pressure and velocity fluctua- 
tions in the potential field just outside the layer, the velocity of the wavy wall 
can be calculated. Clearly, from such an indirect method it is not expected to 
obtain accurate values of c (especially since c is only approximately constant 
along 2). Nevertheless, the method is described here in order to show that with 
the present hot-wire technique measurements of fluctuations in supersonic 
flows may be made with confidence. 

The general hot-wire equation 
T' u' p' u' 

Ae = a-=+B=-S -+= 
T u ( P  u) 

may be put in a simpler form, since outside the boundary layer an isentropic 
relation between the fluctuations may be assumed: 

where 

and 

-1 



288 John Laufer and Thomas Vrebalovich 

Figure 26 shows that At? is a linear function of S, indicating that the total- 
temperature (first term) and mass-flow (second bracketed term) fluctuations are 
perfectly anticorrelated, consistent with the assumption of isentropy . From 
mode diagrams such as figure 26, the velocity and density fluctuations (also 
g j  and p)  may be obtained. From the potential solution of a moving wavy wall 
(Liepmann & Roshko 1957) and from the measured C and /7, the velocity of the 
wall may be calculated: 

For the conditions represented in figure 26 the wave velocity was found to be 
c/Ul = 0.60, which compares well with the value of 0.62 obtained from phase 
measurement. 

5.7. Comparison with theory 

The results that have been described confirm qualitatively the predictions of 
the stability theory: the existence of unstable oscillations in a supersonic 
boundary layer; the wave-like character of the oscillations; and the existence 
of an inner layer within the boundary layer where the amplitude of the oscilla- 
tions is much larger than outside it. In  this section a more quantitative com- 
parison will be made in the light of the various assumptions of the theory. 

Amplitude of the perturbations. In  order to be able to compare the experi- 
mental results with the linear theory, it is necessary, of course, to ascertain that 
the disturbances studied in the experiments are small (assumption 1 of 53.1). 
In  the incompressible case it was shown recently by Schubauer (1958) that pro- 
vided the velocity disturbances do not exceed an amplitude of 1-2 % of the free- 
stream velocity, the use of a linear theory for predicting their behaviour is 
justified. On the basis of the results described subsequently (§5 .8 ) ,  the same 
criterion may be used for the compressible case. 

In  the present experiments using artificial disturbances, it  is estimated, based 
on the results of figure 28, that the fluctuation levels did not exceed the 0.5 yo 
value. (The amplitudes of the natural disturbances were, of course, even smaller.) 
On this basis, therefore, a comparison of the experimental results with a linear 
theory is justified. 

Two- and three-dimensional disturbances. The question arises whether a two- or 
three-dimensional theory should be used in the comparison. In  the incom- 
pressible boundary layer this problem was not essential since, as pointed out 
recently by Lin (1958), the neutral curves for the two cases are almost identical. 

In  the present experiments the natural disturbances were certainly three- 
dimensional, while the artificial ones-although not purely two-dimensional- 
could be considered as containing predominantly two-dimensional disturbances. 
Nevertheless, the measurements made by both types of perturbations produced 
the same results concerning the stability limits and amplifications. On the basis 
of this evidence it may be assumed, therefore, that at  least up to  M = 2.2 the 
stability of the boundary layer with respect to a two- and a three-dimensional 
disturbance does not change measurably. This is in agreement with the con- 
clusion reached by Dunn & Lin (1955). Because of the approximations involved, 
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their result cannot be extended beyond a Mach number of approximately 1-8; 
but within this range they show that the three-dimensional disturbances are 
less important than the two-dimensional ones and become dominant only for the 
case of a cooled boundary layer. 

On the basis of the above discussion the results of the two-dimensional theory 
will be used for the comparison with the experimental findings. 

Neutral curves. Before making a quantitative comparison between the 
theoretical and experimental results, a fundamental difficulty has to be 
pointed out. 

Let us first examine the problem considered by the theory: it is a non- 
stationary one in which the boundary layer of constant thickness (fixed Re) is 
perturbed at time t = to. The amplitude of the disturbances, Q' , is then examined 
to determine how it changes for t > to. If the damping coefficient 

is positive, the boundary layer is said to be unstable a t  Re with respect to the 
disturbance considered. 

On the other hand, the experimenter faces a quasi-stationary problem: a 
disturbance introduced at the leading edge propagates along the layer, its 
amplitude changing in space and time. Thus, at a fixed Re one cannot measure 
a damping coefficient in the sense of the theory since the disturbance, the ampli- 
tude of which is observed at t = to, propagates into a region of increasing Re at 
t > to. What one can do is to measure at  one fixed point in the layer the temporal 
mean value of Q' and observe how this value changes with x; thus, one can 
calculate an amplification defined as (I/&) (d&/dx).  The basic difficulty now is to 
interpret this quantity in terms of the damping coefficient Pi of the theory. The 
general mathematical problem is a difficult one and no attempt is made here 
to discuss it; only one particular aspect will be considered. 

It would be desirable to set up a simple criterion indicating the conditions 
under which comparison between the quantities b4 and (I/&) (d&/dx) could be 
made directly. In  the past the two quantities were compared directly as follows: 
the disturbance being propagated by its eigenvelocity, c = dx/dt, served as the 
required transformation between the space and time co-ordinates; consequently 

I d 0  1 dQ'dt b, it was postulated that 

Q d x  Q' dt dx c * 

This procedure, however, is not strictly correct. It should be remembered that 
the amplitude function q as shown in equation (3.1) implicitly depends on the 
eigenvalues of the problem, thus in particular on the Reynolds number. There- 
fore, as the variation of Q with x is measured, keeping y /S  constant, Re changes 
(the boundary layer thickens) and, as mentioned above, q changes also. There- 
fore, the above equation must contain a term that takes into account this change. 
Thus, one may formally write 

=- 

--=-(-) 1 d 0  1 aq +--. b, 
Qdx q ax ylb C 
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In principle, both quantities on the right-hand side could be calculated from 
the theory and then their sum compared with the measured amplification 
(118) (do/dx) .  This, however, has not been done, mainly because of the extremely 
time-consuming calculations involved. Instead, one may set up the criterion that 
the experimental amplifications can be compared directly with the theoretical 
damping coefficients only if the condition 

is satisfied. 

r;; . 
0 

Q 
8 

R8 

FIUTJRIE 30. Theoretical and experimental neutral stability curves at M, = 2.2. 
Experiment: 0,  upper branch; 0 ,  lower branch. Theory: -. 

This inequality can easily be checked from the plots shown in figure 25. The 
above condition implies that the amplification distributions with frequency be 
the same for all values of y/S for a given Reynolds number. It is seen that on the 
outer edge of the boundary layer and for R, larger than approximately 300, this 
is approximately satisfied. 

With the above limitation in mind we may proceed now to discuss the experi- 
mental results in the light of the theory. Accordingly, only the amplification 
measurements far from the critical layer are considered (y/S fi: 0.8). In figures 
30 and 31 the theoretical curves were calculated by Mack (1960), using the 
method.proposed by Dunn & Lin (1955). 

Considering first the velocity neutral curves of figures 30 and 31, one may 
easily verify that in all cases the propagation velocities of the self-excited oscilla- 



Stability and transition of a supersonic boundary layer 291 

tions are always subsonic with respect to the free stream. As discussed in $3.1, 
this was an important assumption (assumption 4) of the theory that hereby h d s  
complete verification. It is also seen that the absolute values of the velocities 
are in very good agreement with the theoretical predictions, with the possible 
exception of the lower branch points at M = 1.6. (The measurements of the 
larger wavelengths, corresponding to the lower branches, were found to be 
more difficult.) 
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Experiment: 0 ,  upper branch; 0, lower branch. Theory: -. FIGURE 31. Theoretical and experimental neutral stability curves at MI = 1.0. 

Regarding the frequency neutral curves in these figures, the upper branches 
of the experimental and theoretical neutral curves agree satisfactorily. On the 
other hand, there is considerable discrepancy, especially at 32 = 2.2, between 
the Iower branches. Since the lower branches depend mainly on the viscous 
solutions of the stability problem, the source of the difficulty is believed to lie 
in these solutions.* 

5.8. Effect of compressibility on boundary-layer stability 
With the present formulation of the mathematical stability problem, it is not 
possible to answer easily the question of whether compressibility increases or 
decreases the stability of an adiabatic laminar boundary layer. As a matter of 
fact, one may arrive at a wrong conclusion by considering only certain phases 

* In a recent work, Dr E. Reshotko critically examines the stability problem at super- 
~onic Mach numbers and discusses this problem further. 
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of the problem. For instance, the supersonic inviscid boundary layer can be 
shown to be unstable, while the incompressible one is stable; also, from the 
expression of the minimum critical Reynolds number derived by Lees (1947), it  
is found that it decreases with increasing Mach number. From both of these 
results an erroneous conclusion could be drawn. Only the elaborate numerical 
calculations of Lees concerning the maximum amplification ratios of a disturb- 
ance give an indication of greater stability as the free-stream Mach number 
increases (Lees 1952). Under these circumstances it is most desirable if on the 
basis of the experimental findings some correlation could be found between the 
incompressible and compressible stability data from which the question posed 
above could be more readily answered. This problem will now be examined. 

I I I I 
0 4Ooo 6000 8ooo 10,ooo 

R8 

FIGUFLE 32. Experimental neutral stability curves. 
-, M = 0 (Schubauer-Skramstad); 0,  M = 1.6; A, M = 2.2. 

The results of the theoretical eigenvalue calculations are usually presented in 
terms of the boundary-layer momentum thickness as the characteristic length. 
This is done mainly because, for a given x, the momentum thickness 0 is practically 
constant over a wide range of Mach numbers. Considering now the frequency 
neutral curves as a function of R, for various Mach numbers (figures 30 and 31), 
it was noticed that the curves were similar but displaced in R8. Next to be 
examined was the question of whether by stretching the characteristic length 
the neutral curves could be correlated. The fact that the well-known Howarth 
co-ordinate transforms (with some additional minor assumptions) the com- 
pressible velocity distribution into the incompressible one suggests the use of 
the velocity instead of the momentum thickness as the characteristic length. 
In  figure 32 the frequency neutral curves obtained at M = 0 by Schubauer & 
Skramstad (1948) are compared with those measured at M = 1.6 and 2.2 on 
the basis of the velocity thickness Reynolds number. The agreement is sur- 
prisingly good. 
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Indeed a correlation exists, not only for the neutral oscillation, but for the 
amplified oscillations also. Considering sufficiently high Reynolds numbers for 
reasons already discussed in 0 5.7, we may write 

1 de2 1 d Q  pi -_ = _- = - - 
2e2dx Q d x  c ’ 

or, in non-dimensional form, 

The calculation of the amplification coefficient involves a differentiation of the 
amplitude measurements, resulting in some scatter. Nevertheless, within the 
accuracy of the results a satisfactory agreement between the incompressible 

FIUURE 33. Amplification coefficients. 
0 ,  teat 1; A, teat 2; M = 2.2; y/6 = 0.7, 0.8; R,3 = 6400. 

amplification coeflicients and those at M = 2.2 for approximately the same R, 
(figure 33) is obtained. For the propagation velocity the value c = 0.58 was used, 
although it actually changed from 0.55 to 0.61 in the frequency range considered. 

On the basis of the comparisons made, it is seen that in the Mach and Reynolds 
number ranges under consideration the stability limits of a disturbance of given 
frequency depend only on the local thickness 6 and are independent of the Mach 
number. Furthermore, it is apparent that the non-dimensional amplification 
coefficient that is the temporal amplification rate pd Slgl corresponding to a 
given R, and frequency also is unaffected by the Mach number. On the other 
hand, the spatial amplification rate 

SdQ Pi8 _ _  - - - 
Qdx c 

decreases with increasing Mach number. 
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These conclusions are a consequence of the empirical results previously 
described. Unfortunately, the authors have been unsuccessful so far in finding 
a satisfactory explanation for this surprisingly simple correlation within the 
framework of the present theory. Only some rather general inferences may be 
drawn as follows. In  the Mach number range considered, the boundary-layer 
stability is affected mainly by the change in the mean flow field (by the existence 
of mean density and temperature gradients), while the density and temperature 
fluctuations do not play an important role. (Roughly speaking, this implies the 
result of Lees & Lin (1946), who showed that the relation between the eigenvalues 
is independent of the temperature fluctuations.) Furthermore, as a result of 
this change in the mean flow field the disturbance of a given frequency acquires 
a larger wavelength; that is, the disturbance propagates faster downstream. 
As a consequence, the oscillations that have the same amplification coefficients 
have less time available to grow in amplitude over a given length of surface. 
Thus, a compressible boundary layer is more stable than the incompressible one. 

5.9. Effect of Mach number on transition 

Despite the great practical importance of the transition problem, as yet no 
reliable information, either experimental or theoretical, is available for the 
case of an adiabatic surface with zero pressure gradient. Specifically, it is not 
possible to make a definitive statement on the variation of transition Reynolds 
number with Mach number. Under the circumstances, therefore, it is worth- 
while to examine the possibility of estimating, even in a crude fashion, the 
effect of compressibility on transition Reynolds number, using the present 
results. 

As mentioned already in 5 1, the Tollmien-Schlichting instability mechanism 
is only the initial stage of the transition process; therefore, at least in principle, 
it is not justifiable to use the linear theory for predicting the point of transition. 
However, in the incompressible case some favourable circumstances are known 
to exist which, at  least for engineering purposes, permit the use of the linear 
theory. Some recent work of Schubauer (1958) and Klebanoff & Tidstrom (1959) 
indicates that the distance interval between the point of transition, xt, and the 
point where the linear approximation becomes invalid, x,, is small compared 
with x,, and that the breakdown into turbulent spots occurs at approximately 
the same oscillation amplitude (C/Vl M 7 yo). The fair success of the method 
proposed by Smith (1956) in predicting transition Reynolds numbers, using a 
linear theory, is believed to hinge on these experimental findings. 

Unfortunately, in the compressible case very little is known at present about 
the non-linear region of transition. From the lower amplification rates obtained 
in the present work, it is expected that the estimation of the transition point 
will be less successful. Nevertheless, because of the lack of anything better, an 
attempt is made to obtain an approximate variation of transition Reynolds 
number with Mach number. The assumptions involved in the calculation are 
as follows: (1) the amplification ratio at breakdown is the same as in the incom- 
pressible case (log [&/Q,] = 6.5, which yields the transition Reynolds number 
R, = 3 x lo6 observed by Schubauer & Skramstad); (2) the initial amplitude 
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Qo of the critical disturbances is independent of frequency and Mach number; 
(3) the ratio c/chC is independent of R,. 

From the form of the disturbance (3.1) we may write 

where a is constant. 

& a  dR, since - = - - _  
x @ x ’  

where a is constant. 
In  the incompressible case, Pretsch calculated and charted the value of this 

integral for all unstable frequencies. By means of his calculations,* it is easily 
verified that the minimum Reynolds number at which the disturbance reaches an 
amplification ratio log (&/Q,) = 6.5 turns out to be & = 10,400 or R, = 3 x 106. 
For the compressible case on the basis of assumption 3, one may rewrite the 
above eauation 

Using the present experimental result that /3iS/U, is a function of R, only, 
independently of M ,  Pretsch’s charts can be used for the evaluation of the second 
factor on the right-hand side of the above equation. The new ‘fictitious ’ amplifica- 
tion ratio is a2 c 

6.5. ___ 
4 l C C i L l C  

The table below shows the transition Reynolds number ratios for various Mach 
numbers and the approximate values of c/cinc used in the calculation: 

M 0 0.4 0.8 1-3 1.6 2.0 
c/c,nc 1.0 1-06 1.13 1.20 1-33 1.76 
[ ~ ~ / ~ , l U C I ,  1.0 1.1 1.2 1.4 1.0 2.3 

The rapid increase in transition Reynolds number is quite apparent. 

6. Conclusion 
A detailed exploration has been made of small-amplitude disturbances in a 

laminar supersonic layer up to M = 2.2, and the stability of the layer with respect 
to these perturbations was examined. The results may be summarized as follows. 

(1) The experiments succeeded in detecting self-excited oscillations in the 
layer. Generally speaking, the basic features of these oscillations are the same 
as found in the incompressible layer and are in agreement with the existing theory. 
Specifically, the boundary layer acts as a frequency selective-amplifier with 
respect to the disturbances: depending on the local Reynolds number, it  atten- 
uates certain frequencies and amplifies others, thus causing detectable oscillations 
in a narrow bandwidth. 

(2) Amplitude distributions of velocity, temperature, and density fluctuations 
have been calculated from the measurements. It was found that at  M = 2.2 

* The authors are grateful to A. M. 0. Smith, who extended and re-plotted Pretsch’s 
oalculations in a more convenient form and made hie charts accessible. 
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the temperature and density fluctuations are several times that of the velocity, 
and this ratio is shown to increase further with increasing Mach number. 

(3) Comparing the results with the stability theory of Lees, Lin, and Dunn, 
one may conclude that the theory predicts correctly the basic features of the 
compressible-boundary-layer stability. Quantitatively, the viscous solutions 
predict Reynolds numbers corresponding to the lower stability limits which are 
considerably below the measured values. On the other hand, the theoretical 
upper stability branch agrees very well with that obtained by the experiments. 

(4) Within the accuracy of the measurements, results of the incompressible 
and compressible stability problem may be correlated; it is shown that up to 
M = 2.2 the stability limits (two positions on the plate between which a dis- 
turbance is amplified) of a perturbation of a given frequency depend only on the 
Reynolds number based on the local boundary-layer thickness 6, and are in- 
dependent of the Mach number. Furthermore, the non-dimensional arnplifica- 
tion coefficient 6/3JV1 depends only on the local eigenvalues (frequency, R,) 
and not on the Mach number. 

( 6 )  The effect of compressibility manifests itself mainly in changing the wave 
velocity of the disturbances: they propagate faster with increasing Mach number. 
This has the important consequence that a disturbance propagating to a given 
z-position will not be amplified as much in a higher Mach number flow because 
its time available to grow is less, even though its amplification coefficient 
(6pi/Ol) (R8) is the same. Thus, the adiabatic compressible boundary layer is 
shown to be more stable with respect to small disturbances than the incompres- 
sible one. 

(6) On the basis of the above results, a rough estimate of the transition 
Reynolds number is made; the calculations indicate a considerable increase in 
its value as the Mach number increases. 
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Notation 
C wave velocity 
C, 
e hot-wire voltage 

et 

specific heat at constant volume 

hot-wire voltage filtered by wave analyser 
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a dimensionless hot-wire voltage fluctuation 
frequency 
heated-wire current 
thermal conductivity 
mass flow 
Mach number 
static pressure 
Reynolds number 
unheated-wire resistance 
heated-wire resistance 
Reynolds number based on boundary-layer momentum thickness 
Reynolds number based on boundary-layer thickness at  u/gl = 0.999 
perturbation of any one of the flow quantities 
hot-wire sensitivity factor 
time 
static temperature 
velocity in the x-direction 
mean velocity in free stream 
velocity fluctuation perpendicular to plate 
co-ordinate along the free-stream direction; 2 = 0 corresponds to plate 

co-ordinate perpendicular to free-stream direction and the flat plate; 

abscissa and ordinate on the plotting table 
wave-num ber 
2 ~ f ,  angular frequency 
damping coefficient 
ratio of specific heats 

leading edge 

y = 0 corresponds to plate surface 

h e  

i 
k 
m 
M 
P 
Re  

f 

R, 
Rw 
R* 
R, 
Q' 
S 
t 
T 
U 

Vl 
21' 

X 

Y 

x, y 

P 
Pi 

r =  

a 

Y 

s 
8 
h 
P 

P 
V 

boundary -layer thickness 
boundary-layer momentum thickness 
27r/a, wavelength 
viscosity 
kinematic viscosity 
density 

Xuperscripts and subscripts 

temporal mean 
mean-square value of a fluctuating quantity 
root-mean-square value of a fluctuating quantity 
instantaneous value of a fluctuating quantity 
free-stream condition 
stagnation condition 
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